493 research outputs found

    Progenitor Cell Therapy for the Treatment of Central Nervous System Injury: A Review of the State of Current Clinical Trials

    Get PDF
    Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrow-derived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials

    No Consensus on Definition Criteria for Stroke Registry Common Data Elements

    Get PDF
    www.karger.com/cee This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only

    In-hospital outcomes and 30-day readmission rates among ischemic and hemorrhagic stroke patients with delirium

    Get PDF
    OBJECTIVE: Delirium is associated with poor outcomes among critically ill patients. However, it is not well characterized among patients with ischemic or hemorrhagic stroke (IS and HS). We provide the population-level frequency of in-hospital delirium and assess its association with in-hospital outcomes and with 30-day readmission among IS and HS patients. METHODS: We analyzed Nationwide in-hospital and readmission data for years 2010-2015 and identified stroke patients using ICD-9 codes. Delirium was identified using validated algorithms. Outcomes were in-hospital mortality, length of stay, unfavorable discharge disposition, and 30-day readmission. We used survey design logistic regression methods to provide national estimates of proportions and 95% confidence intervals (CI) for delirium, and odds ratios (OR) for association between delirium and poor outcomes. RESULTS: We identified 3,107,437 stroke discharges of whom 7.45% were coded to have delirium. This proportion significantly increased between 2010 (6.3%) and 2015 (8.7%) (aOR, 95% CI: 1.04, 1.03-1.05). Delirium proportion was higher among HS patients (ICH: 10.0%, SAH: 9.8%) as compared to IS patients (7.0%). Delirious stroke patients had higher in-hospital mortality (12.3% vs. 7.8%), longer in-hospital stay (11.6 days vs. 7.3 days) and a significantly greater adjusted risk of 30-day-readmission (16.7%) as compared to those without delirium (12.2%) (aRR, 95% CI: 1.13, 1.11-1.15). Upon readmission, patients with delirium at initial admission continued to have a longer length of stay (7.7 days vs. 6.6 days) and a higher in-hospital mortality (9.3% vs. 6.4%). CONCLUSION: Delirium identified through claims data in stroke patients is independently associated with poor in-hospital outcomes both at index admission and readmission. Identification and management of delirium among stroke patients provides an opportunity to improve outcomes

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Access to

    Get PDF
    Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrowderived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    A Pilot Randomized Controlled Trial of Omega-3 Fatty Acids for Autism Spectrum Disorder

    Get PDF
    We conducted a pilot randomized controlled trial to determine the feasibility and initial safety and efficacy of omega-3 fatty acids (1.3 g/day) for the treatment of hyperactivity in 27 children ages 3–8 with autism spectrum disorder (ASD). After 12 weeks, hyperactivity, as measured by the Aberrant Behavior Checklist, improved 2.7 (±4.8) points in the omega-3 group compared to 0.3 (±7.2) points in the placebo group (p = 0.40; effect size = 0.38). Correlations were found between decreases in five fatty acid levels and decreases in hyperactivity, and the treatment was well tolerated. Although this pilot study did not find a statistically significant benefit from omega-3 fatty acids, the small sample size does not rule out small to moderate beneficial effects

    World-Wide Efficacy of Bone Marrow Derived Mesenchymal Stromal Cells in Preclinical Ischemic Stroke Models: Systematic Review and Meta-Analysis

    Get PDF
    Background: Following extensive, positive results in pre-clinical experiments, Bone Marrow Derived-Mesenchymal Stromal Cells (BM-MSCs) are now being tested as a novel therapy for ischemic stroke in ongoing clinical trials. However, multiple critical questions relating to their translational application remain to be clarified. We performed a comprehensive, systematic review and meta-analysis of pre-clinical studies to evaluate the efficacy of BM-MSCs on functional outcomes after ischemic stroke, as well as the independent role of translational factors on their effect size.Methods: We systematically reviewed the literature and identified articles using BM-MSCs in animal models of focal ischemic stroke. After abstraction of all relevant data, we performed a meta-analysis to estimate the combined effect size of behavioral endpoints after BM-MSC administration. To describe the effect size across many behavioral outcomes, we divided these outcomes into four categories: (1) Composite scores, (2) Motor Tests, (3) Sensorimotor Tests, and (4) Cognitive Tests. We also performed a meta-regression analysis for measuring the effect of individual characteristics of BM-MSC administration on the effect size.Results: Our results from 141 articles indicate a significant beneficial effect on composite, motor, and sensorimotor outcomes after treatment with BM-MSCs compared to control groups. We found no major differences in treatment effect based on delivery route, dose, fresh vs. frozen preparation, or passage number. There were no consistent findings supporting a difference in treatment effect based on time windows from acute periods (0–6 h) vs. later windows (2–7 days). Furthermore, these positive treatment effects on functional outcome were consistent across different labs in different parts of the world as well as over the last 18 years. There was a negative correlation between publication year and impact factor.Conclusions: Our results show worldwide efficacy of BM-MSCs in improving functional outcomes in pre-clinical animal models of stroke and support testing these cells in clinical trials in various ranges of time windows using different delivery routes. The continued growing number of publications showing functional benefit of BM-MSCs are now adding limited value to an oversaturated literature spanning 18 years. Researchers should focus on identifying definitive mechanisms on how BM-MSCs lead to benefit in stroke models
    corecore